Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.576
Filtrar
1.
Sci Rep ; 14(1): 10551, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719929

RESUMO

Our purpose was to elucidate the genotype and ophthalmological and audiological phenotype in TUBB4B-associated inherited retinal dystrophy (IRD) and sensorineural hearing loss (SNHL), and to model the effects of all possible amino acid substitutions at the hotspot codons Arg390 and Arg391. Six patients from five families with heterozygous missense variants in TUBB4B were included in this observational study. Ophthalmological testing included best-corrected visual acuity, fundus examination, optical coherence tomography, fundus autofluorescence imaging, and full-field electroretinography (ERG). Audiological examination included pure-tone and speech audiometry in adult patients and auditory brainstem response testing in a child. Genetic testing was performed by disease gene panel analysis based on genome sequencing. The molecular consequences of the substitutions of residues 390 and 391 on TUBB4B and its interaction with α-tubulin were predicted in silico on its three-dimensional structure obtained by homology modelling. Two independent patients had amino acid exchanges at position 391 (p.(Arg391His) or p.(Arg391Cys)) of the TUBB4B protein. Both had a distinct IRD phenotype with peripheral round yellowish lesions with pigmented spots and mild or moderate SNHL, respectively. Yet the phenotype was milder with a sectorial pattern of bone spicules in one patient, likely due to a genetically confirmed mosaicism for p.(Arg391His). Three patients were heterozygous for an amino acid exchange at position 390 (p.(Arg390Gln) or p.(Arg390Trp)) and presented with another distinct retinal phenotype with well demarcated pericentral retinitis pigmentosa. All showed SNHL ranging from mild to severe. One additional patient showed a variant distinct from codon 390 or 391 (p.(Tyr310His)), and presented with congenital profound hearing loss and reduced responses in ERG. Variants at codon positions 390 and 391 were predicted to decrease the structural stability of TUBB4B and its complex with α-tubulin, as well as the complex affinity. In conclusion, the twofold larger reduction in heterodimer affinity exhibited by Arg391 substitutions suggested an association with the more severe retinal phenotype, compared to the substitution at Arg390.


Assuntos
Códon , Perda Auditiva Neurossensorial , Fenótipo , Tubulina (Proteína) , Humanos , Feminino , Tubulina (Proteína)/genética , Tubulina (Proteína)/química , Masculino , Adulto , Perda Auditiva Neurossensorial/genética , Códon/genética , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Criança , Linhagem , Adolescente , Substituição de Aminoácidos , Adulto Jovem , Retinose Pigmentar/genética
2.
Elife ; 122024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727583

RESUMO

Retinitis pigmentosa (RP) is an inherited retinal disease in which there is a loss of cone-mediated daylight vision. As there are >100 disease genes, our goal is to preserve cone vision in a disease gene-agnostic manner. Previously we showed that overexpressing TXNIP, an α-arrestin protein, prolonged cone vision in RP mouse models, using an AAV to express it only in cones. Here, we expressed different alleles of Txnip in the retinal pigmented epithelium (RPE), a support layer for cones. Our goal was to learn more of TXNIP's structure-function relationships for cone survival, as well as determine the optimal cell type expression pattern for cone survival. The C-terminal half of TXNIP was found to be sufficient to remove GLUT1 from the cell surface, and improved RP cone survival, when expressed in the RPE, but not in cones. Knock-down of HSP90AB1, a TXNIP-interactor which regulates metabolism, improved the survival of cones alone and was additive for cone survival when combined with TXNIP. From these and other results, it is likely that TXNIP interacts with several proteins in the RPE to indirectly support cone survival, with some of these interactions different from those that lead to cone survival when expressed only in cones.


Assuntos
Proteínas de Transporte , Modelos Animais de Doenças , Células Fotorreceptoras Retinianas Cones , Retinose Pigmentar , Animais , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Camundongos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Mutação de Sentido Incorreto , Sobrevivência Celular , Alelos , Deleção de Genes , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Epitélio Pigmentado da Retina/metabolismo
3.
Medicina (Kaunas) ; 60(5)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38792980

RESUMO

Purpose: To describe an atypical phenotypic pattern of late-onset retinitis pigmentosa (RP) due to the same specific c.425A>G (p.Tyr142Cys) heterozygous mutation in the cone-rod homeobox gene (CRX gene) in two unrelated Italian patients. Case 1: A 67-year-old woman (P.P.) was incidentally diagnosed with sector RP at the age of 50. The patient was initially asymptomatic and did not have any family history of retinal dystrophy. Fundus examination showed the presence of typical retinal pigmentary deposits with a peculiar pericentral/sector distribution. Genomic sequencing disclosed the missense mutation c.425A>G (p.Tyr142Cys) in the CRX gene. During the follow-up period of 7 years, the patient maintained good visual acuity and complained only of mild symptoms. Case 2: A 76-year-old man (P.E.) presented with nyctalopia and visual field constriction since the age of 50. Fundus examination showed the presence of retinal pigment deposits with a concentric pericentral and perimacular pattern. A full-field electroretinogram (ffERG) showed extinguished scotopic responses and reduced abnormal photopic and flicker cone responses. Genomic sequencing identified the same missense mutation, c.425A>G (p.Tyr142Cys), in the CRX gene. Similarly to the first case, during the whole follow-up of 7 years, the visual acuity remained stable, as did the visual field and the patient's symptoms. Conclusions: We report the first cases of late-onset retinitis pigmentosa related to a specific heterozygous CRX gene mutation in exon 4. We also report two atypical phenotypic RP patterns related to mutations in the CRX gene.


Assuntos
Proteínas de Homeodomínio , Retinose Pigmentar , Transativadores , Humanos , Retinose Pigmentar/genética , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/fisiopatologia , Feminino , Idoso , Itália , Masculino , Proteínas de Homeodomínio/genética , Transativadores/genética , Mutação de Sentido Incorreto , Mutação , Eletrorretinografia/métodos , Fenótipo
4.
Nat Commun ; 15(1): 4316, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773095

RESUMO

As signalling organelles, cilia regulate their G protein-coupled receptor content by ectocytosis, a process requiring localised actin dynamics to alter membrane shape. Photoreceptor outer segments comprise an expanse of folded membranes (discs) at the tip of highly-specialised connecting cilia, into which photosensitive GPCRs are concentrated. Discs are shed and remade daily. Defects in this process, due to mutations, cause retinitis pigmentosa (RP). Whilst fundamental for vision, the mechanism of photoreceptor disc generation is poorly understood. Here, we show membrane deformation required for disc genesis is driven by dynamic actin changes in a process akin to ectocytosis. We show RPGR, a leading RP gene, regulates actin-binding protein activity central to this process. Actin dynamics, required for disc formation, are perturbed in Rpgr mouse models, leading to aborted membrane shedding as ectosome-like vesicles, photoreceptor death and visual loss. Actin manipulation partially rescues this, suggesting the pathway could be targeted therapeutically. These findings help define how actin-mediated dynamics control outer segment turnover.


Assuntos
Actinas , Proteínas do Olho , Retinose Pigmentar , Animais , Actinas/metabolismo , Camundongos , Retinose Pigmentar/metabolismo , Retinose Pigmentar/genética , Proteínas do Olho/metabolismo , Proteínas do Olho/genética , Cílios/metabolismo , Humanos , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL , Membrana Celular/metabolismo
5.
Invest Ophthalmol Vis Sci ; 65(5): 39, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38787546

RESUMO

Purpose: Post-saccadic oscillations (PSOs) reflect movements of gaze that result from motion of the pupil and lens relative to the eyeball rather than eyeball rotations. Here, we analyzed the characteristics of PSOs in subjects with age-related macular degeneration (AMD), retinitis pigmentosa (RP), and normal vision (NV). Our aim was to assess the differences in PSOs between people with vision loss and healthy controls because PSOs affect retinal image stability after each saccade. Methods: Participants completed a horizontal saccade task and their gaze was measured using a pupil-based eye tracker. Oscillations occurring in the 80 to 200 ms post-saccadic period were described with a damped oscillation model. We compared the amplitude, decay time constant, and frequency of the PSOs for the three different groups. We also examined the correlation between these PSO parameters and the amplitude, peak velocity, and final deceleration of the preceding saccades. Results: Subjects with vision loss (AMD, n = 6, and RP, n = 5) had larger oscillation amplitudes, longer decay constants, and lower frequencies than subjects with NV (n = 7). The oscillation amplitudes increased with increases in saccade deceleration in all three groups. The other PSO parameters, however, did not show consistent correlations with either saccade amplitude or peak velocity. Conclusions: Post-saccadic fixation stability in AMD and RP is reduced due to abnormal PSOs. The differences with respect to NV are not due to differences in saccade kinematics, suggesting that anatomic and neuronal variations affect the suspension of the iris and the lens in the patients' eyes.


Assuntos
Fixação Ocular , Degeneração Macular , Pupila , Retinose Pigmentar , Movimentos Sacádicos , Humanos , Movimentos Sacádicos/fisiologia , Retinose Pigmentar/fisiopatologia , Feminino , Masculino , Fixação Ocular/fisiologia , Pessoa de Meia-Idade , Degeneração Macular/fisiopatologia , Idoso , Pupila/fisiologia , Cristalino/fisiopatologia , Adulto , Acuidade Visual/fisiologia
6.
Elife ; 122024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661530

RESUMO

Retinitis pigmentosa (RP), a heterogenous group of inherited retinal disorder, causes slow progressive vision loss with no effective treatments available. Mutations in the rhodopsin gene (RHO) account for ~25% cases of autosomal dominant RP (adRP). In this study, we describe the disease characteristics of the first-ever reported mono-allelic copy number variation (CNV) in RHO as a novel cause of adRP. We (a) show advanced retinal degeneration in a male patient (68 years of age) harboring four transcriptionally active intact copies of rhodopsin, (b) recapitulated the clinical phenotypes using retinal organoids, and (c) assessed the utilization of a small molecule, Photoregulin3 (PR3), as a clinically viable strategy to target and modify disease progression in RP patients associated with RHO-CNV. Patient retinal organoids showed photoreceptors dysgenesis, with rod photoreceptors displaying stunted outer segments with occasional elongated cilia-like projections (microscopy); increased RHO mRNA expression (quantitative real-time PCR [qRT-PCR] and bulk RNA sequencing); and elevated levels and mislocalization of rhodopsin protein (RHO) within the cell body of rod photoreceptors (western blotting and immunohistochemistry) over the extended (300 days) culture time period when compared against control organoids. Lastly, we utilized PR3 to target NR2E3, an upstream regulator of RHO, to alter RHO expression and observed a partial rescue of RHO protein localization from the cell body to the inner/outer segments of rod photoreceptors in patient organoids. These results provide a proof-of-principle for personalized medicine and suggest that RHO expression requires precise control. Taken together, this study supports the clinical data indicating that RHO-CNV associated adRPdevelops as a result of protein overexpression, thereby overloading the photoreceptor post-translational modification machinery.


Assuntos
Variações do Número de Cópias de DNA , Retinose Pigmentar , Rodopsina , Idoso , Humanos , Masculino , Organoides/metabolismo , Organoides/efeitos dos fármacos , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Rodopsina/genética , Rodopsina/metabolismo
7.
Genes (Basel) ; 15(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674450

RESUMO

Retinitis pigmentosa is a group of genetically determined retinal dystrophies characterized by primary photoreceptor apoptosis and can occur in isolated or syndromic conditions. This study reviewed the clinical data of 15 patients with syndromic retinitis pigmentosa from a Rare Disease Reference Center in Brazil and the results of their next-generation sequencing tests. Five males and ten females participated, with the mean ages for ocular disease onset, fundoscopic diagnosis, and molecular evaluation being 9, 19, and 29 years, respectively. Bardet-Biedl syndrome (n = 5) and Usher syndrome (n = 3) were the most frequent diagnoses, followed by other rare conditions. Among the patients, fourteen completed molecular studies, with three negative results and eleven revealing findings in known genes, including novel variants in MKKS (c.432_435del, p.Phe144Leufs*14), USH2A (c.(7301+1_7302-1)_(9369+1_9370-1)del), and CEP250 (c.5383dup, p.Glu1795Glyfs*13, and c.5050del, p.Asp1684Thrfs*9). Except for Kearn-Sayre, all presented an autosomal recessive inheritance pattern with 64% homozygosity results. The long gap between symptom onset and diagnosis highlights the diagnostic challenges faced by the patients. This study reaffirms the clinical heterogeneity of syndromic retinitis pigmentosa and underscores the pivotal role of molecular analysis in advancing our understanding of these diseases.


Assuntos
Retinose Pigmentar , Humanos , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Retinose Pigmentar/diagnóstico , Masculino , Feminino , Adulto , Adolescente , Criança , Adulto Jovem , Síndromes de Usher/genética , Síndromes de Usher/patologia , Síndromes de Usher/diagnóstico , Brasil/epidemiologia , Pessoa de Meia-Idade , Sequenciamento de Nucleotídeos em Larga Escala , Síndrome de Bardet-Biedl/genética , Mutação
8.
Tomography ; 10(4): 480-492, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38668395

RESUMO

The aim of this paper is to investigate whether a multifractal analysis can be applied to study choroidal blood vessels and help ophthalmologists in the early diagnosis of retinitis pigmentosa (RP). In a case study, we used spectral domain optical coherence tomography (SDOCT), which is a noninvasive and highly sensitive imaging technique of the retina and choroid. The image of a choroidal branching pattern can be regarded as a multifractal. Therefore, we calculated the generalized Renyi point-centered dimensions, which are considered a measure of the inhomogeneity of data, to prove that it increases in patients with RP as compared to those in the control group.


Assuntos
Corioide , Retinose Pigmentar , Tomografia de Coerência Óptica , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Corioide/diagnóstico por imagem , Corioide/patologia , Fractais , Retinose Pigmentar/diagnóstico por imagem , Retinose Pigmentar/patologia , Tomografia de Coerência Óptica/métodos
9.
Nat Commun ; 15(1): 3562, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670966

RESUMO

The diagnosis of inherited retinal degeneration (IRD) is challenging owing to its phenotypic and genotypic complexity. Clinical information is important before a genetic diagnosis is made. Metabolomics studies the entire picture of bioproducts, which are determined using genetic codes and biological reactions. We demonstrated that the common diagnoses of IRD, including retinitis pigmentosa (RP), cone-rod dystrophy (CRD), Stargardt disease (STGD), and Bietti's crystalline dystrophy (BCD), could be differentiated based on their metabolite heatmaps. Hundreds of metabolites were identified in the volcano plot compared with that of the control group in every IRD except BCD, considered as potential diagnosing markers. The phenotypes of CRD and STGD overlapped but could be differentiated by their metabolomic features with the assistance of a machine learning model with 100% accuracy. Moreover, EYS-, USH2A-associated, and other RP, sharing considerable similar characteristics in clinical findings, could also be diagnosed using the machine learning model with 85.7% accuracy. Further study would be needed to validate the results in an external dataset. By incorporating mass spectrometry and machine learning, a metabolomics-based diagnostic workflow for the clinical and molecular diagnoses of IRD was proposed in our study.


Assuntos
Aprendizado de Máquina , Metabolômica , Degeneração Retiniana , Retinose Pigmentar , Doença de Stargardt , Humanos , Metabolômica/métodos , Diagnóstico Diferencial , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/sangue , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Masculino , Feminino , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Retinose Pigmentar/sangue , Retinose Pigmentar/metabolismo , Doença de Stargardt/genética , Adulto , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Biomarcadores/sangue , Metaboloma , Criança , Distrofias de Cones e Bastonetes/diagnóstico , Distrofias de Cones e Bastonetes/genética , Distrofias de Cones e Bastonetes/sangue , Distrofias de Cones e Bastonetes/metabolismo , Espectrometria de Massas , Degeneração Macular/sangue , Degeneração Macular/diagnóstico , Degeneração Macular/genética
10.
FASEB J ; 38(8): e23606, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648465

RESUMO

Rhodopsin mislocalization encompasses various blind conditions. Rhodopsin mislocalization is the primary factor leading to rod photoreceptor dysfunction and degeneration in autosomal dominant retinitis pigmentosa (adRP) caused by class I mutations. In this study, we report a new knock-in mouse model that harbors a class I Q344X mutation in the endogenous rhodopsin gene, which causes rod photoreceptor degeneration in an autosomal dominant pattern. In RhoQ344X/+ mice, mRNA transcripts from the wild-type (Rho) and RhoQ344X mutant rhodopsin alleles are expressed at equal levels. However, the amount of RHOQ344X mutant protein is 2.7 times lower than that of wild-type rhodopsin, a finding consistent with the rapid degradation of the mutant protein. Immunofluorescence microscopy indicates that RHOQ344X is mislocalized to the inner segment and outer nuclear layers of rod photoreceptors in both RhoQ344X/+ and RhoQ344X/Q344X mice, confirming the essential role of the C-terminal VxPx motif in promoting OS delivery of rhodopsin. The mislocalization of RHOQ344X is associated with the concurrent mislocalization of wild-type rhodopsin in RhoQ344X/+ mice. To understand the global changes in proteostasis, we conducted quantitative proteomics analysis and found attenuated expression of rod-specific OS membrane proteins accompanying reduced expression of ciliopathy causative gene products, including constituents of BBSome and axonemal dynein subunit. Those studies unveil a novel negative feedback regulation involving ciliopathy-associated proteins. In this process, a defect in the trafficking signal leads to a reduced quantity of the trafficking apparatus, culminating in a widespread reduction in the transport of ciliary proteins.


Assuntos
Modelos Animais de Doenças , Técnicas de Introdução de Genes , Células Fotorreceptoras Retinianas Bastonetes , Retinose Pigmentar , Rodopsina , Animais , Rodopsina/metabolismo , Rodopsina/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Camundongos , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Cílios/metabolismo , Cílios/patologia
11.
Neurosci Lett ; 830: 137778, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621504

RESUMO

The endoplasmic reticulum (ER) plays an indispensable role in cellular processes, including maintenance of calcium homeostasis, and protein folding, synthesized and processing. Disruptions in these processes leading to ER stress and the accumulation of misfolded proteins can instigate the unfolded protein response (UPR), culminating in either restoration of balanced proteostasis or apoptosis. A key player in this intricate balance is CLCC1, an ER-resident chloride channel, whose essential role extends to retinal development, regulation of ER stress, and UPR. The importance of CLCC1 is further underscored by its interaction with proteins localized to mitochondria-associated endoplasmic reticulum membranes (MAMs), where it participates in UPR induction by MAM proteins. In previous research, we identified a p.(Asp25Glu) pathogenic CLCC1 variant associated with retinitis pigmentosa (RP) (CLCC1 hg38 NC_000001.11; NM_001048210.3, c.75C > A; UniprotKB Q96S66). In attempt to decipher the impact of this variant function, we leveraged liquid chromatography-mass spectrometry (LC-MS) to identify likely CLCC1-interacting proteins. We discovered that the CLCC1 interactome is substantially composed of proteins that localize to ER compartments and that the Asp25Glu variant results in noticeable loss and gain of specific protein interactors. Intriguingly, the analysis suggests that the CLCC1Asp25Glu mutant protein exhibits a propensity for increased interactions with cytoplasmic proteins compared to its wild-type counterpart. To corroborate our LC-MS data, we further scrutinized two novel CLCC1 interactors, Calnexin and SigmaR1, chaperone proteins that localize to the ER and MAMs. Through microscopy, we demonstrate that CLCC1 co-localizes with both proteins, thereby validating our initial findings. Moreover, our results reveal that CLCC1 co-localizes with SigmaR1 not merely at the ER, but also at MAMs. These findings reinforce the notion of CLCC1 interacting with MAM proteins at the ER-mitochondria interface, setting the stage for further exploration into how these interactions impact ER or mitochondria function and lead to retinal degenerative disease when impaired.


Assuntos
Retículo Endoplasmático , Receptores sigma , Receptor Sigma-1 , Humanos , Retículo Endoplasmático/metabolismo , Células HEK293 , Mitocôndrias/metabolismo , Mitocôndrias/genética , Membranas Mitocondriais/metabolismo , Receptores sigma/metabolismo , Receptores sigma/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Resposta a Proteínas não Dobradas
12.
J Med Chem ; 67(10): 8396-8405, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38688030

RESUMO

Retinitis pigmentosa (RP) is a form of retinal degeneration affecting a young population with an unmet medical need. Photoreceptor degeneration has been associated with increased guanosine 3',5'-cyclic monophosphate (cGMP), which reaches toxic levels for photoreceptors. Therefore, inhibitory cGMP analogues attract interest for RP treatments. Here we present the synthesis of dithio-CN03, a phosphorodithioate analogue of cGMP, prepared using the H-phosphonothioate route. Two crystal modifications were identified as a trihydrate and a tetrahydrofuran monosolvates. Dithio-CN03 featured a lower aqueous solubility than its RP-phosphorothioate counterpart CN03, a drug candidate, and this characteristic might be favorable for sustained-release formulations aimed at retinal delivery. Dithio-CN03 was tested in vitro for its neuroprotective effects in photoreceptor models of RP. The comparison of dithio-CN03 to CN03 and its diastereomer SP-CN03, and to their phosphate derivative oxo-CN03 identifies dithio-CN03 as the compound with the highest efficacy in neuroprotection and thus as a promising new candidate for the treatment of RP.


Assuntos
GMP Cíclico , Fármacos Neuroprotetores , Células Fotorreceptoras Retinianas Bastonetes , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Guanosina Monofosfato/química , Guanosina Monofosfato/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico , Degeneração Retiniana/tratamento farmacológico , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Células Fotorreceptoras Retinianas Bastonetes/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar/tratamento farmacológico , Retinose Pigmentar/metabolismo , Relação Estrutura-Atividade
13.
Int J Biol Macromol ; 268(Pt 2): 131671, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641272

RESUMO

In this study, N-Methyl-N-nitrosourea (MNU) was intraperitoneally injected to construct a mouse retinitis pigmentosa (RP) model to evaluate the protective effect of chitosan and ß-carotene on RP. The results demonstrated that chitosan synergized with ß-carotene significantly reduced retinal histopathological structural damage in RP mice. The co-treatment group of ß-carotene and chitosan restored the retinal thickness and outer nuclear layer thickness better than the group treated with the two alone, and the thickness reached the normal level. The content of ß-carotene and retinoids in the liver of chitosan and ß-carotene co-treated group increased by 46.75 % and 20.69 %, respectively, compared to the ß-carotene group. Chitosan and ß-carotene supplement suppressed the expressions of Bax, Calpain2, Caspase3, NF-κB, TNF-α, IL-6, and IL-1ß, and promoted the up-regulation of Bcl2. Chitosan and ß-carotene interventions remarkably contributed to the content of SCFAs and enhanced the abundance of Ruminococcaceae, Rikenellaceae, Odoribacteraceae and Helicobacteraceae. Correlation analysis demonstrated a strong association between gut microbiota and improvement in retinitis pigmentosa. This study will provide a reference for the study of the gut-eye axis.


Assuntos
Quitosana , Metilnitrosoureia , Retinose Pigmentar , beta Caroteno , Animais , beta Caroteno/farmacologia , Quitosana/farmacologia , Quitosana/química , Retinose Pigmentar/tratamento farmacológico , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia , Camundongos , Sinergismo Farmacológico , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Retinoides/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo
14.
Mol Vis ; 30: 49-57, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586605

RESUMO

RPGR pathogenic variants are the major cause of X-linked retinitis pigmentosa. Here, we report the results from 1,033 clinical DNA tests that included sequencing of RPGR. A total of 184 RPGR variants were identified: 78 pathogenic or likely pathogenic, 14 uncertain, and 92 likely benign or benign. Among the pathogenic and likely pathogenic variants, 23 were novel, and most were frameshift or nonsense mutations (87%) and enriched (67%) in RPGR exon 15 (ORF15). Identical pathogenic variants found in different families were largely on different haplotype backgrounds, indicating relatively frequent, recurrent RPGR mutations. None of the 16 mother/affected son pairs showed de novo mutations; all 16 mothers were heterozygous for the pathogenic variant. These last two observations support the occurrence of most RPGR mutations in the male germline.


Assuntos
Proteínas do Olho , Retinose Pigmentar , Humanos , Proteínas do Olho/genética , Linhagem , Mutação , Mutação da Fase de Leitura , Transtornos da Visão , Retinose Pigmentar/genética , Retinose Pigmentar/patologia
15.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570189

RESUMO

Crumbs homolog 1 (CRB1) is one of the key genes linked to retinitis pigmentosa and Leber congenital amaurosis, which are characterized by a high clinical heterogeneity. The Crumbs family member CRB2 has a similar protein structure to CRB1, and in zebrafish, Crb2 has been shown to interact through the extracellular domain. Here, we show that CRB1 and CRB2 co-localize in the human retina and human iPSC-derived retinal organoids. In retina-specific pull-downs, CRB1 was enriched in CRB2 samples, supporting a CRB1-CRB2 interaction. Furthermore, novel interactors of the crumbs complex were identified, representing a retina-derived protein interaction network. Using co-immunoprecipitation, we further demonstrate that human canonical CRB1 interacts with CRB1 and CRB2, but not with CRB3, which lacks an extracellular domain. Next, we explored how missense mutations in the extracellular domain affect CRB1-CRB2 interactions. We observed no or a mild loss of CRB1-CRB2 interaction, when interrogating various CRB1 or CRB2 missense mutants in vitro. Taken together, our results show a stable interaction of human canonical CRB2 and CRB1 in the retina.


Assuntos
Amaurose Congênita de Leber , Retinose Pigmentar , Animais , Humanos , Peixe-Zebra/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Retina/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Transporte/metabolismo
16.
Nat Commun ; 15(1): 3138, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605034

RESUMO

The carboxy-terminus of the spliceosomal protein PRPF8, which regulates the RNA helicase Brr2, is a hotspot for mutations causing retinitis pigmentosa-type 13, with unclear role in human splicing and tissue-specificity mechanism. We used patient induced pluripotent stem cells-derived cells, carrying the heterozygous PRPF8 c.6926 A > C (p.H2309P) mutation to demonstrate retinal-specific endophenotypes comprising photoreceptor loss, apical-basal polarity and ciliary defects. Comprehensive molecular, transcriptomic, and proteomic analyses revealed a role of the PRPF8/Brr2 regulation in 5'-splice site (5'SS) selection by spliceosomes, for which disruption impaired alternative splicing and weak/suboptimal 5'SS selection, and enhanced cryptic splicing, predominantly in ciliary and retinal-specific transcripts. Altered splicing efficiency, nuclear speckles organisation, and PRPF8 interaction with U6 snRNA, caused accumulation of active spliceosomes and poly(A)+ mRNAs in unique splicing clusters located at the nuclear periphery of photoreceptors. Collectively these elucidate the role of PRPF8/Brr2 regulatory mechanisms in splicing and the molecular basis of retinal disease, informing therapeutic approaches.


Assuntos
Sítios de Splice de RNA , Retinose Pigmentar , Spliceossomos , Humanos , Spliceossomos/genética , Spliceossomos/metabolismo , Proteômica , Splicing de RNA/genética , Processamento Alternativo/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , RNA Mensageiro/metabolismo , Mutação , DNA Helicases/metabolismo , Proteínas de Ligação a RNA/metabolismo
17.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612560

RESUMO

Retinal degenerative diseases, including age-related macular degeneration and retinitis pigmentosa, significantly contribute to adult blindness. The Royal College of Surgeons (RCS) rat is a well-established disease model for studying these dystrophies; however, molecular investigations remain limited. We conducted a comprehensive analysis of retinal degeneration in RCS rats, including an immunodeficient RCS (iRCS) sub-strain, using ocular coherence tomography, electroretinography, histology, and molecular dissection using transcriptomics and immunofluorescence. No significant differences in retinal degeneration progression were observed between the iRCS and immunocompetent RCS rats, suggesting a minimal role of adaptive immune responses in disease. Transcriptomic alterations were primarily in inflammatory signaling pathways, characterized by the strong upregulation of Tnfa, an inflammatory signaling molecule, and Nox1, a contributor to reactive oxygen species (ROS) generation. Additionally, a notable decrease in Alox15 expression was observed, pointing to a possible reduction in anti-inflammatory and pro-resolving lipid mediators. These findings were corroborated by immunostaining, which demonstrated increased photoreceptor lipid peroxidation (4HNE) and photoreceptor citrullination (CitH3) during retinal degeneration. Our work enhances the understanding of molecular changes associated with retinal degeneration in RCS rats and offers potential therapeutic targets within inflammatory and oxidative stress pathways for confirmatory research and development.


Assuntos
Degeneração Macular , Degeneração Retiniana , Retinose Pigmentar , Cirurgiões , Humanos , Adulto , Animais , Ratos , Retina
18.
Transl Vis Sci Technol ; 13(4): 23, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38630470

RESUMO

Purpose: The common protocol of full-field stimulus threshold (FST) testing recommends pupil dilation. The aim of this study is to investigate the difference between FST measurements with dilated and nondilated pupils in healthy subjects and patients with retinitis pigmentosa (RP). Methods: Twenty healthy subjects and 20 RP patients were selected. One pupil of each subject was dilated; the other eye was measured in physiological width of the pupil. The FST was conducted using Diagnosys Espion E2/E3 with white, blue, and red stimuli. Statistical analysis was conducted with a mixed-model analysis of variance and a paired t-test. Results: The statistical analysis revealed a significant difference between measurements of dilated and nondilated pupils with the following: blue stimuli for all subjects and groups except those with highly progressed RP; white stimuli for all tested subjects in total, for RP patients with better-preserved visual field (VF), and rod-mediated FST response; and red stimuli for RP patients with better-preserved VF and rod-mediated FST response. On average, the difference between the FST values for RP patients were -3.2 ± 3 dB for blue, -2.3 ± 2.9 dB for white, and -0.83 ± 3 dB for red stimuli. The correlation between the FST values of dilated and nondilated pupils with all three stimuli was linear. Conclusions: Current recommendations are to perform FST with dilated pupils. However, based on this study's findings, pupil dilation can be omitted for clinical diagnostics or rough follow-ups. Translational Relevance: Our data provide useful information for the clinical use of FST.


Assuntos
Pupila , Retinose Pigmentar , Humanos , Voluntários Saudáveis , Projetos de Pesquisa , Retinose Pigmentar/diagnóstico , Campos Visuais
19.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 456-460, 2024 Apr 10.
Artigo em Chinês | MEDLINE | ID: mdl-38565512

RESUMO

OBJECTIVE: To explore the genetic basis for a patient with autosomal dominant retinitis pigmentosa (RP). METHODS: A male patient with RP treated at Gansu Provincial Maternal and Child Health Care Hospital in September 2019 was selected as the study subject. Clinical data was collected. Peripheral blood samples of the patient and his parents were subjected to whole exome sequencing (WES). Candidate variant was validated by Sanger sequencing and bioinformatic analysis. RESULTS: The patient, a 29-year-old male, developed night blindness, amblyopia, visual field defects and optic disc abnormalities since childhood. Gene sequencing revealed that he has harbored a heterozygous c.942G>C (p.Lys314Asn) variant of the IMPDH1 gene, which was inherited from his mother, whilst his father was of the wild type. Based on the guidelines from the American College of Medical Genetics and Genomics, the c.942G>C variant was predicted as likely pathogenic (PM1+PM2_Supporting+PP3+PP1). CONCLUSION: The c.942G>C (p.Lys314Asn) variant in the IMPDH1 gene probably underlay the RP in this patient.


Assuntos
Retinose Pigmentar , Adulto , Feminino , Humanos , Masculino , Biologia Computacional , Genômica , Heterozigoto , IMP Desidrogenase , Mães , Mutação , Retinose Pigmentar/genética
20.
Proc Natl Acad Sci U S A ; 121(11): e2316118121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442152

RESUMO

Retinitis pigmentosa (RP) is a common form of retinal dystrophy that can be caused by mutations in any one of dozens of rod photoreceptor genes. The genetic heterogeneity of RP represents a significant challenge for the development of effective therapies. Here, we present evidence for a potential gene-independent therapeutic strategy based on targeting Nr2e3, a transcription factor required for the normal differentiation of rod photoreceptors. Nr2e3 knockout results in hybrid rod photoreceptors that express the full complement of rod genes, but also a subset of cone genes. We show that germline deletion of Nr2e3 potently protects rods in three mechanistically diverse mouse models of retinal degeneration caused by bright-light exposure (light damage), structural deficiency (rhodopsin-deficient Rho-/- mice), or abnormal phototransduction (phosphodiesterase-deficient rd10 mice). Nr2e3 knockout confers strong neuroprotective effects on rods without adverse effects on their gene expression, structure, or function. Furthermore, in all three degeneration models, prolongation of rod survival by Nr2e3 knockout leads to lasting preservation of cone morphology and function. These findings raise the possibility that upregulation of one or more cone genes in Nr2e3-deficient rods may be responsible for the neuroprotective effects we observe.


Assuntos
Fármacos Neuroprotetores , Distrofias Retinianas , Retinose Pigmentar , Animais , Camundongos , Células Fotorreceptoras Retinianas Cones , Retinose Pigmentar/genética , Modelos Animais de Doenças , Células Germinativas , Receptores Nucleares Órfãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...